Std Graph Analysis Smooth Savitzky: Difference between revisions

From LabRPS Documentation
Jump to navigation Jump to search
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Docnav
{{Docnav
|[[Std_Graph_Analysis_Smooth|Smooth]]
|[[Std_Graph_Analysis_Smooth|Smooth]]
|[[Std_Graph_Analysis_Smooth_Moving_window_average]]
|[[Std_Graph_Analysis_Smooth_Moving_window_average|Moving Window Average]]
|[[Std_Analysis_Menu|Graph Analysis]]
|[[Std_Analysis_Menu|Graph Analysis]]
|IconL=
|IconL=
Line 13: Line 13:
|Phenomena=All
|Phenomena=All
|Version=0.001
|Version=0.001
|SeeAlso=[[Std_Graph_Analysis_Smooth|Smooth]], [[Std_Graph_Analysis_Smooth_Moving_window_average]]
|SeeAlso=[[Std_Graph_Analysis_Smooth|Smooth]], [[Std_Graph_Analysis_Smooth_Moving_window_average|Moving Window Average]]
}}
}}


Line 24: Line 24:


==Note==
==Note==
This command performs a smoothing of the selected curve using the Savitzky-Golay method. The formula used to smooth the curve defined by the points yi=f(xi) is:
This command performs a smoothing of the selected curve using the Savitzky-Golay method.
 
The data consists of a set of points {''x''<sub>''j''</sub>, ''y''<sub>''j''</sub>}, ''j'' = 1, ..., ''n'', where ''x''<sub>''j''</sub> is an independent
<math>Y_j= \sum _{i=\tfrac{1-m}2}^{\tfrac{m-1}2}C_i\, y_{j+i},\qquad  \frac{m+1}{2} \le j \le n-\frac{m-1}{2}</math>


{{Docnav
{{Docnav
|[[Std_Graph_Analysis_Smooth|Smooth]]
|[[Std_Graph_Analysis_Smooth|Smooth]]
|[[Std_Graph_Analysis_Smooth_Moving_window_average]]
|[[Std_Graph_Analysis_Smooth_Moving_window_average|Moving Window Average]]
|[[Std_Analysis_Menu|Graph Analysis]]
|[[Std_Analysis_Menu|Graph Analysis]]
|IconL=
|IconL=

Latest revision as of 08:33, 5 September 2022

Std Graph Analysis Smooth Savitzky

Menu location
Analysis → Smooth → Savitzky Golay...
Phenomena
All
Default shortcut
None
Introduced in version
0.001
See also
Smooth, Moving Window Average

Description

The Std Graph Analysis Smooth Savitzky command performs a smoothing of the selected curve using the Savitzky-Golay method.

Usage

  1. Select the Analysis → Smooth → Savitzky Golay... option from the menu.

Note

This command performs a smoothing of the selected curve using the Savitzky-Golay method.