Plugin SeismicLab AspasiaZerva
Jump to navigation
Jump to search
Description |
---|
This plugin simulates seismic ground motion according to the approach proposed by Aspasia Zerva (1992). Plugin version: 1.0 Last modified: 21/12/2024 LabRPS version: All Author: Koffi Daniel |
Author |
Koffi Daniel |
Download |
None |
Features |
Aspasia Zerva 1992 |
Plugin Version |
1.0 |
Date last modified |
21/12/2024 |
LabRPS Version(s) |
All |
Default shortcut |
None |
See also |
None |
Aspasia Zerva 1992
This plugin simulates seismic ground motion according to the approach proposed by Aspasia Zerva (1992).
Wittig Sinha Equal Floors
This is the only RPS feature that the plugin implements. It belongs to the simulation method group. This feature implements the seismic ground motion simulation method according to Aspasia Zerva (1992)
Feature Dependency
The features required by this feature are summarized in the following table:
- A simulation points feature
- A frequency discretization feature
- A randomness provider feature
- A modulation function(time envelop)
- A spectrum feature
Properties
- DataStandardDeviation: The standard deviation of the excitation.
- DataDominantFrequency: The dominant frequency of the earthquake excitation.
- DataDampingRatio: The bandwidth of the earthquake excitation.
- DataEnvelopValueAtNinetyPercentDuration: The value of the envelop function at 90 percent of the duration.
- DataNormalizedDurationTimeAtPeak: The normalized duration time when ground motion achieves peak.
Scripting
import LabRPS import SeismicLab import SeismicLabObjects from LabRPS import Vector as vec import time def simulate(): # Plugin installResuslt = SeismicLab.installPlugin("SeismicLabPlugin") if not installResuslt: LabRPS.Console.PrintError("The installation the SeismicLabPlugin has failed.\n") return None installResuslt = SeismicLab.installPlugin("AspasiaZervaPlugin") if not installResuslt: LabRPS.Console.PrintError("The installation the AspasiaZervaPlugin has failed.\n") return None # Document doc = LabRPS.newDocument() # Simulation sim = SeismicLabObjects.makeSimulation(doc, "Simulation") if not sim: LabRPS.Console.PrintError("The simulation does not exist.\n") return None # Simulation points loc = SeismicLabObjects.makeFeature("SimulationPoints", "Simulation", "Horizontal Distribution", "Location Distribution") if not loc: LabRPS.Console.PrintError("Error on creating the location distribution.\n") return None # Frequencies frequency = SeismicLabObjects.makeFeature("Frequencies", "Simulation", "Double Index Frequency Discretization", "Frequency Distribution") if not frequency: LabRPS.Console.PrintError("Error on creating the frequency distribution.\n") return None # Spectrum spectrum = SeismicLabObjects.makeFeature("Spectrum", "Simulation", "Clough-Penzien Spectrum", "Spectrum") if not spectrum: LabRPS.Console.PrintError("Error on creating the spectrum model.\n") return None # Spectrum decomposition spectrumD = SeismicLabObjects.makeFeature("Envelop", "Simulation", "Bogdanoff Goldberg Bernard Modulation Function", "Modulation Function") if not spectrumD: LabRPS.Console.PrintError("Error on creating the modulation function.\n") return None # Random phase randomness = SeismicLabObjects.makeFeature("RandomPhases", "Simulation", "Uniform Random Phases", "Randomness Provider") if not randomness: LabRPS.Console.PrintError("The creation of the randomness provider was not successuful.\n") return None # Simulation method simMethod = SeismicLabObjects.makeFeature("SimulationMethod", "Simulation", "Aspasia Zerva 1992", "Simulation Method") if not simMethod: LabRPS.Console.PrintError("Error on creating the simulation method.\n") return None sim.Stationarity = False # Run simulation and output the first(0) sample # store starting time begin = time.time() velocities = sim.simulate(0) # store end time end = time.time() LabRPS.Console.PrintMessage(f"Total runtime of the simulaltion is {end - begin} seconds\n") if LabRPS.GuiUp: import SeismicLabGui import GeneralToolsGui SeismicLabGui.setActiveSimulation(sim) GeneralToolsGui.GeneralToolsPyTool.showArray(sim.getSimulationData().numberOfTimeIncrements, sim.getSimulationData().numberOfSpatialPosition + 1, velocities, True) doc.recompute() simulate()