Plugin WindLab: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
|Version=1.0 | |Version=1.0 | ||
|Date=2024-04-15 | |Date=2024-04-15 | ||
|Features= [[#Cholesky_Decomposition|Cholesky Decomposition]] [[#Horizontal_Uniform_Distribution|Horizontal Uniform Distribution]] [[#Vertical_Uniform_Distribution|Vertical Uniform Distribution]] | |Features= [[#Cholesky_Decomposition|Cholesky Decomposition]] [[#Horizontal_Uniform_Distribution|Horizontal Uniform Distribution]] [[#Vertical_Uniform_Distribution|Vertical Uniform Distribution]] [[#Uniform_Distribution|Uniform Distribution]] | ||
|RPSVersion=All | |RPSVersion=All | ||
}} | }} | ||
Line 44: | Line 44: | ||
if not sim: | if not sim: | ||
LabRPS.Console.PrintError("The simulation does not exist.\n") | LabRPS.Console.PrintError("The simulation does not exist.\n") | ||
# abord the computation | |||
featureType = "Cholesky Decomposition" | featureType = "Cholesky Decomposition" | ||
Line 56: | Line 56: | ||
if not decomposedPSD : | if not decomposedPSD : | ||
LabRPS.Console.PrintError("Error on creating the spectrum decomposition method.\n") | LabRPS.Console.PrintError("Error on creating the spectrum decomposition method.\n") | ||
# abord the computation | |||
# get the active simulation points feature and compute the simulation points coordinates | # get the active simulation points feature and compute the simulation points coordinates | ||
Line 66: | Line 66: | ||
v3 = vec(simPoints[2][1], simPoints[2][2], simPoints[2][3]) | v3 = vec(simPoints[2][1], simPoints[2][2], simPoints[2][3]) | ||
# This | # This feature is used to decompose power spectrum matrices which may vary in time. Let's assume that | ||
# the active power spectrun density function in this example is stationary. Meanning it is not varying in time. | # the active power spectrun density function in this example is stationary. Meanning it is not varying in time. | ||
#Then, we use time instant of 0 second. | #Then, we use time instant of 0 second. | ||
Line 85: | Line 85: | ||
== Horizontal Uniform Distribution == | == Horizontal Uniform Distribution == | ||
This feature provides an efficient method to distribute random wind simulation points uniformly in space. It allows users to generate a set of points within a 3D spatial domain, ensuring that the points are evenly distributed along a horizontal line. This uniform distribution is critical in certain simulation methods. For <math>n</math> simulation points <math>(P_1,P_2,P_3,...,P_n)</math>, the distance <math>d_{jk}</math> between points <math>P_j</math> and <math>P_k</math> must be given by the following formula: | This feature provides an efficient method to distribute random wind simulation points uniformly in space. It allows users to generate a set of points within a 3D spatial domain, ensuring that the points are evenly distributed along a horizontal line that is parallel to one of the coordinate system axis. This uniform distribution is critical in certain simulation methods. For <math>n</math> simulation points <math>(P_1,P_2,P_3,...,P_n)</math>, the distance <math>d_{jk}</math> between points <math>P_j</math> and <math>P_k</math> must be given by the following formula: | ||
<math>d_{jk} = s\times|j-k|</math> | <math>d_{jk} = s\times|j-k|</math> | ||
Line 110: | Line 110: | ||
if not sim: | if not sim: | ||
LabRPS.Console.PrintError("The simulation does not exist.\n") | LabRPS.Console.PrintError("The simulation does not exist.\n") | ||
# abord the computation | |||
featureType = "Horizontal Distribution" | featureType = "Horizontal Distribution" | ||
Line 122: | Line 122: | ||
if not unifSimPoints: | if not unifSimPoints: | ||
LabRPS.Console.PrintError("Error on creating the uniform points feature.\n") | LabRPS.Console.PrintError("Error on creating the uniform points feature.\n") | ||
# abord the computation | |||
# let's set the first point of the distribution (x =0, y = 0, z = 80m) | # let's set the first point of the distribution (x =0, y = 0, z = 80m) | ||
simPoints.FirstPoint = vec(0,0,80000) | simPoints.FirstPoint = vec(0,0,80000) | ||
Line 164: | Line 164: | ||
if not sim: | if not sim: | ||
LabRPS.Console.PrintError("The simulation does not exist.\n") | LabRPS.Console.PrintError("The simulation does not exist.\n") | ||
# abord the computation | |||
featureType = "VerticalDistribution" | featureType = "VerticalDistribution" | ||
Line 176: | Line 176: | ||
if not unifSimPoints: | if not unifSimPoints: | ||
LabRPS.Console.PrintError("Error on creating the uniform points feature.\n") | LabRPS.Console.PrintError("Error on creating the uniform points feature.\n") | ||
# abord the computation | |||
# let's set the first point of the distribution (x =0, y = 0, z = 30m) | # let's set the first point of the distribution (x =0, y = 0, z = 30m) | ||
simPoints.LowestPoint = vec(0,0,30000) | simPoints.LowestPoint = vec(0,0,30000) | ||
# let's set the spacing (s = 10m) | |||
simPoints.Spacing = '10m' | |||
# compute the simulation points coordinates | |||
simPoints = sim.computeLocationCoordinateMatrixP3() | |||
# now you can convert the coordinate matrix to numpy array and use it for any other purposes | |||
arr = numpy.asarray(simPoints) | |||
}} | |||
== Uniform Distribution == | |||
This feature may be seen as a general form of the horizontal and the vertical distribution features. It allows users to generate a set of points within a 3D spatial domain, ensuring that the points are evenly distributed along a line parallel to one of the coordinate system axis. For <math>n</math> simulation points <math>(P_1,P_2,P_3,...,P_n)</math>, the distance <math>d_{jk}</math> between points <math>P_j</math> and <math>P_k</math> must be given by the following formula: | |||
<math>d_{jk} = s\times|j-k|</math> | |||
where <math>s</math> is the even space between any two adjacent points. | |||
=== Properties === | |||
* {{PropertyData|FirstPoint}}: This is a point in 3D space representing the first point the distribution will start from. This should be the lowest point in case the distribution is parallel to the vertical axis and should not be lower than 10 meters in many application. | |||
* {{PropertyData|Spacing}}: This is the even space between any two adjacent points in the distribution. | |||
* {{PropertyData|Direction}}: Its value can be X, Y or Z. This is the axis the points distribution is parallel to. | |||
=== Scripting === | |||
This feature can be used to produce vertical distribution as we did before in the Vertical Distribution feature. | |||
{{Code|code= | |||
import WindLab | |||
import WindLabObjects | |||
from LabRPS import Vector as vec | |||
import numpy | |||
# get an existing WindLab simulation called "Simulation" | |||
sim = WindLab.getSimulation("Simulation") | |||
# check if the simulation does really exist | |||
if not sim: | |||
LabRPS.Console.PrintError("The simulation does not exist.\n") | |||
# abord the computation | |||
featureType = "UniformDistribution" | |||
featureGroup = "Location Distribution" | |||
# create the feature and add it to the existing simulation (you may refer to the WindLab Workbench page in | |||
# case you don't understand the next line) | |||
unifSimPoints= WindLabObjects.makeFeature("MyNewFeature", sim.Name, featureType, featureGroup) | |||
# check if the created feature is good | |||
if not unifSimPoints: | |||
LabRPS.Console.PrintError("Error on creating the uniform points feature.\n") | |||
# abord the computation | |||
# set the direction of the distribution to be vertical | |||
simPoints.Direction= 'Z' | |||
# let's set the first point of the distribution (x =0, y = 0, z = 30m) | |||
simPoints.FirstPoint = vec(0,0,30000) # This is the lowest point in this case (Direction = 'Z') | |||
# let's set the spacing (s = 10m) | # let's set the spacing (s = 10m) |
Revision as of 03:40, 20 November 2024
Description |
---|
This plugin implement various WindLab features. Plugin version: 1.0 Last modified: 2024-04-15 LabRPS version: All Author: Koffi Daniel |
Author |
Koffi Daniel |
Download |
None |
Features |
Cholesky Decomposition Horizontal Uniform Distribution Vertical Uniform Distribution Uniform Distribution |
Plugin Version |
1.0 |
Date last modified |
2024-04-15 |
LabRPS Version(s) |
All |
Default shortcut |
None |
See also |
None |
You can find the source code of this plugin on the following Github repository: Get the code here!. This plugin is one of the official plugins provided by LabRPS. It provides very useful features (tools) for the simulation of random wind velocity. Plugins are very easy to create in LabRPS, therefore, anyone can develop plugin for any random phenomenon in LabRPS. Go to this page to see how to create new plugin for LabRPS. You can get quick assistance from LabRPS community by sending your concern to the community forum.
Cholesky Decomposition
This feature performs the Cholesky decomposition of a positive Hermitian power spectrum matrix and returns the lower triangular matrix (L) of the decomposition. The Cholesky decomposition is a numerical method used to decompose a positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose. Specifically, for a matrix A, the decomposition is given by:
[math]\displaystyle{ \mathbf{A} = \mathbf{L L}^{*}, }[/math]
[math]\displaystyle{ L_{j,j} = \sqrt{ A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^*L_{j,k} }, }[/math]
[math]\displaystyle{ L_{i,j} = \frac{1}{L_{j,j}} \left( A_{i,j} - \sum_{k=1}^{j-1} L_{j,k}^* L_{i,k} \right) \quad \text{for } i\gt j. }[/math]
where [math]\displaystyle{ L }[/math] is a lower triangular matrix with real and positive diagonal entries, and [math]\displaystyle{ L^* }[/math] denotes the conjugate transpose of [math]\displaystyle{ L }[/math].
The feature is optimized for performance and can handle large matrices efficiently using [math]\displaystyle{ O(n^3) }[/math] computational complexity in the worst case. It checks if the input matrix is indeed positive-definite and Hermitian before performing the decomposition and raises an error if the matrix does not meet these conditions. The feature belong to the PSD Decomposition Method feature group.
Scripting
The feature can be used from the python console as follows:
import WindLab import WindLabObjects from LabRPS import Vector as vec import numpy # get an existing WindLab simulation called "Simulation" sim = WindLab.getSimulation("Simulation") # check if the simulation does really exist if not sim: LabRPS.Console.PrintError("The simulation does not exist.\n") # abord the computation featureType = "Cholesky Decomposition" featureGroup = "Spectrum Decomposition Method" # create the feature and add it to the existing simulation (you may refer to the WindLab Workbench page in # case you don't understand the next line) decomposedPSD = WindLabObjects.makeFeature("MyNewFeature", sim.Name, featureType, featureGroup) # check if the created feature is good if not decomposedPSD : LabRPS.Console.PrintError("Error on creating the spectrum decomposition method.\n") # abord the computation # get the active simulation points feature and compute the simulation points coordinates simPoints = sim.computeLocationCoordinateMatrixP3() # use a vector to represent a simulation point based on its coordinates v1 = vec(simPoints[0][1], simPoints[0][2], simPoints[0][3]) v2 = vec(simPoints[1][1], simPoints[1][2], simPoints[1][3]) v3 = vec(simPoints[2][1], simPoints[2][2], simPoints[2][3]) # This feature is used to decompose power spectrum matrices which may vary in time. Let's assume that # the active power spectrun density function in this example is stationary. Meanning it is not varying in time. #Then, we use time instant of 0 second. time = 0.0 # compute the decomposed cross spectrum between points 1 and 3, at time instant of 0 second and for all frequency # increments. Note that when the following code is run, WindLab will try to identify the active frequency distribution, # the active power spectrum feature, the active coherence function feature and others. If WindLab fails to find any # of these dependency features, the computation will fails and specific error messages will be sent to the report view. # The following function is only one of its functions. There are some other two. psd13 = sim.computeDecomposedCrossSpectrumVectorF(v1, v3, time) # psd13 can be converted to numpy vector and be used for some other purposes. arr = numpy.asarray(psd13)
Horizontal Uniform Distribution
This feature provides an efficient method to distribute random wind simulation points uniformly in space. It allows users to generate a set of points within a 3D spatial domain, ensuring that the points are evenly distributed along a horizontal line that is parallel to one of the coordinate system axis. This uniform distribution is critical in certain simulation methods. For [math]\displaystyle{ n }[/math] simulation points [math]\displaystyle{ (P_1,P_2,P_3,...,P_n) }[/math], the distance [math]\displaystyle{ d_{jk} }[/math] between points [math]\displaystyle{ P_j }[/math] and [math]\displaystyle{ P_k }[/math] must be given by the following formula:
[math]\displaystyle{ d_{jk} = s\times|j-k| }[/math]
where [math]\displaystyle{ s }[/math] is the even space between any two adjacent points.
Properties
- DataFirstPoint: This is a point in 3D space representing the first point the distribution will start from.
- DataSpacing: This is the even space between any two adjacent points in the distribution.
Scripting
import WindLab import WindLabObjects from LabRPS import Vector as vec import numpy # get an existing WindLab simulation called "Simulation" sim = WindLab.getSimulation("Simulation") # check if the simulation does really exist if not sim: LabRPS.Console.PrintError("The simulation does not exist.\n") # abord the computation featureType = "Horizontal Distribution" featureGroup = "Location Distribution" # create the feature and add it to the existing simulation (you may refer to the WindLab Workbench page in # case you don't understand the next line) unifSimPoints= WindLabObjects.makeFeature("MyNewFeature", sim.Name, featureType, featureGroup) # check if the created feature is good if not unifSimPoints: LabRPS.Console.PrintError("Error on creating the uniform points feature.\n") # abord the computation # let's set the first point of the distribution (x =0, y = 0, z = 80m) simPoints.FirstPoint = vec(0,0,80000) # let's set the spacing (s = 10m) simPoints.Spacing = '10m' # compute the simulation points coordinates simPoints = sim.computeLocationCoordinateMatrixP3() # now you can convert the coordinate matrix to numpy array and use it for any other purposes arr = numpy.asarray(simPoints)
Vertical Uniform Distribution
This feature provides an efficient method to distribute random wind simulation points uniformly in space. It allows users to generate a set of points within a 3D spatial domain, ensuring that the points are evenly distributed along a vertical line. This uniform distribution is critical in certain simulation methods. For [math]\displaystyle{ n }[/math] simulation points [math]\displaystyle{ (P_1,P_2,P_3,...,P_n) }[/math], the distance [math]\displaystyle{ d_{jk} }[/math] between points [math]\displaystyle{ P_j }[/math] and [math]\displaystyle{ P_k }[/math] must be given by the following formula:
[math]\displaystyle{ d_{jk} = s\times|j-k| }[/math]
where [math]\displaystyle{ s }[/math] is the even space between any two adjacent points.
Properties
- DataLowestPoint: This is a point in 3D space representing the lowest point the distribution will start from. In many applications, this point should not be lower than 10 meters.
- DataSpacing: This is the even space between any two adjacent points in the distribution.
Scripting
import WindLab import WindLabObjects from LabRPS import Vector as vec import numpy # get an existing WindLab simulation called "Simulation" sim = WindLab.getSimulation("Simulation") # check if the simulation does really exist if not sim: LabRPS.Console.PrintError("The simulation does not exist.\n") # abord the computation featureType = "VerticalDistribution" featureGroup = "Location Distribution" # create the feature and add it to the existing simulation (you may refer to the WindLab Workbench page in # case you don't understand the next line) unifSimPoints= WindLabObjects.makeFeature("MyNewFeature", sim.Name, featureType, featureGroup) # check if the created feature is good if not unifSimPoints: LabRPS.Console.PrintError("Error on creating the uniform points feature.\n") # abord the computation # let's set the first point of the distribution (x =0, y = 0, z = 30m) simPoints.LowestPoint = vec(0,0,30000) # let's set the spacing (s = 10m) simPoints.Spacing = '10m' # compute the simulation points coordinates simPoints = sim.computeLocationCoordinateMatrixP3() # now you can convert the coordinate matrix to numpy array and use it for any other purposes arr = numpy.asarray(simPoints)
Uniform Distribution
This feature may be seen as a general form of the horizontal and the vertical distribution features. It allows users to generate a set of points within a 3D spatial domain, ensuring that the points are evenly distributed along a line parallel to one of the coordinate system axis. For [math]\displaystyle{ n }[/math] simulation points [math]\displaystyle{ (P_1,P_2,P_3,...,P_n) }[/math], the distance [math]\displaystyle{ d_{jk} }[/math] between points [math]\displaystyle{ P_j }[/math] and [math]\displaystyle{ P_k }[/math] must be given by the following formula:
[math]\displaystyle{ d_{jk} = s\times|j-k| }[/math]
where [math]\displaystyle{ s }[/math] is the even space between any two adjacent points.
Properties
- DataFirstPoint: This is a point in 3D space representing the first point the distribution will start from. This should be the lowest point in case the distribution is parallel to the vertical axis and should not be lower than 10 meters in many application.
- DataSpacing: This is the even space between any two adjacent points in the distribution.
- DataDirection: Its value can be X, Y or Z. This is the axis the points distribution is parallel to.
Scripting
This feature can be used to produce vertical distribution as we did before in the Vertical Distribution feature.
import WindLab import WindLabObjects from LabRPS import Vector as vec import numpy # get an existing WindLab simulation called "Simulation" sim = WindLab.getSimulation("Simulation") # check if the simulation does really exist if not sim: LabRPS.Console.PrintError("The simulation does not exist.\n") # abord the computation featureType = "UniformDistribution" featureGroup = "Location Distribution" # create the feature and add it to the existing simulation (you may refer to the WindLab Workbench page in # case you don't understand the next line) unifSimPoints= WindLabObjects.makeFeature("MyNewFeature", sim.Name, featureType, featureGroup) # check if the created feature is good if not unifSimPoints: LabRPS.Console.PrintError("Error on creating the uniform points feature.\n") # abord the computation # set the direction of the distribution to be vertical simPoints.Direction= 'Z' # let's set the first point of the distribution (x =0, y = 0, z = 30m) simPoints.FirstPoint = vec(0,0,30000) # This is the lowest point in this case (Direction = 'Z') # let's set the spacing (s = 10m) simPoints.Spacing = '10m' # compute the simulation points coordinates simPoints = sim.computeLocationCoordinateMatrixP3() # now you can convert the coordinate matrix to numpy array and use it for any other purposes arr = numpy.asarray(simPoints)